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Over the last decade, supercomputer capa-
bilities have increased at a staggering rate. 
Petascale computing has arrived, and ma-

chines capable of tens of petaflops will be available 
in a few years. No end is in sight to this trend, with 
research in exascale computing well under way. 

These machines are used primar-
ily for scientific simulations that 
produce extremely large data sets. 
The value of these simulations is 
the scientific insights they pro-
duce, which are often enabled 
by scientific visualization. If vi-
sualization software can’t keep 
pace with the massive data sets 
simulations will produce in the 
near future, however, it will po-
tentially jeopardize the value of 
the simulations and thus the su-
percomputers themselves.

For large-data visualization, 
the most fundamental question 
is what paradigm to use to pro-

cess this data. Most visualization software for large 
data, including much of the production visualiza-
tion software that serves large user communities, 
uses brute-force pure parallelism—data parallelism 
with no optimizations to reduce the amount of data 
being read. In this approach, the simulation writes 

data to disk and the visualization software reads 
this data at full resolution, storing it in primary 
memory. Because the data is so large, it’s necessary 
to parallelize its processing by partitioning the data 
over processors and having each processor work on 
a piece of the problem. Through parallelization, the 
visualization software can access more I/O band-
width (to read data faster), more memory (to store 
more data), and more computing power (to execute 
its algorithms more quickly).

Our research seeks to better understand how 
pure parallelism will perform on more cores with 
larger data sets. How does this technique scale? 
What are the bottlenecks? What are the pitfalls of 
running production software at a massive scale? 
And will pure parallelism be effective for the next 
generation of data sets?

These questions are especially important because 
pure parallelism is not the only data-processing 
paradigm. And where pure parallelism is heavily 
dependent on I/O bandwidth and large memory 
footprints, alternatives de-emphasize these traits. 
Examples include in situ processing, where visual-
ization algorithms operate during the simulation’s 
run, and multiresolution techniques, where a hier-
archical version of the data set is created and vi-
sualized from coarser to finer versions. With this 
paper, however, we only study how pure parallel-
ism will handle massive data.

This	article	presents	the	results	
of	experiments	studying	how	
the	pure-parallelism	paradigm	
scales	to	massive	data	sets,	
including	16,000	or	more	cores	
on	trillion-cell	meshes,	the	
largest	data	sets	published	
to	date	in	the	visualization	
literature.	The	findings	on	
scaling	characteristics	and	
bottlenecks	contribute	to	
understanding	how	pure	
parallelism	will	perform	in	the	
future.
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We performed our experiments using only a sin-
gle visualization tool, VisIt, although we don’t believe 
this limits the impact of our results. We aimed to un-
derstand whether pure parallelism will work at ex-
treme scale, not to compare tools. When a program 
succeeds, it validates the underlying technique. 
When a program fails, it might indicate a failing in 
the technique or a poor program implementation. 
Our principal findings here were that pure paral-
lelism at an extreme scale worked, that algorithms 
such as contouring and rendering performed well, 
and that I/O times were very long. Therefore, the 
only issue requiring further study was I/O per-
formance. We could have addressed this issue by 
studying other production visualization tools, but 
they would ultimately employ the same (or simi-
lar) low-level I/O calls, such as fread, that are 
themselves the key problem. So, rather than varying 
visualization tools, each of which follows the same 
I/O pattern, we varied the I/O patterns (that is, 
we used collective and noncollective I/O) and com-
pared them across architectures and file systems.

Pure Parallelism
Pure parallelism partitions the underlying mesh (or 
points for scattered data) of a large data set among 
its cores, each of which corresponds to a message 
passing interface (MPI) task. Each core loads its 
portion of the data set at full resolution, applies 
visualization algorithms to its piece, and then 
combines the results, typically through rendering. 
In VisIt, the pure-parallelism implementation cen-
ters around data-flow networks. To satisfy a given 
request, every core sets up an identical data-flow 
network, differentiated only by the portion of the 
whole data set on which that core operates. (For 
previous work on this area, see the “Related Work 
in Large-Data Visualization” sidebar.)

Many visualization algorithms are embarassingly 
parallel; that is, they require no interprocess com-
munication and can operate on their own portion 
of the data set without coordination with the other 
cores. Examples of these algorithms are slicing and 
contouring. However, some important algorithms 
do require interprocess communication and there-
fore aren’t embarassingly parallel. Examples include 
volume rendering, streamline generation, and ghost 
data generation. (When a large data set is decom-
posed into chunks, ghost data is a redundant layer 
of cells around the boundaries of each chunk. These 
extra cells are sometimes necessary to prevent arti-
facts, usually due to interpolation inconsistencies.)

The pure-parallelism paradigm accommodates 
both types of algorithms. For embarrassingly par-
allel algorithms, each core can directly apply the 

serial algorithms to its portion of the data set. 
Pure parallelism is often the simplest environment 
to implement non-embarrassingly parallel algo-
rithms as well, because every piece of data is avail-
able at any time, at full resolution. This property 
is especially beneficial when the operation order is 
data dependent (streamlines) or when coordina-
tion between the data chunks is necessary (volume 
rendering, ghost data generation).

After the algorithms are applied, their results 
are rendered in parallel. The rendering algorithm 
combines all the cores’ results, as if all the data 
was rendered on a single core. The algorithm scales 
relatively well, although the combination phase is 
O(n log n).

Pure parallelism typically employs one of two 
hardware scenarios. Processing occurs

 ■ on a smaller supercomputer dedicated to visu-
alizing and analyzing data sets produced by a 
larger supercomputer or

 ■ on the supercomputer that generated the data.

In both scenarios, visualization and analysis pro-
grams often operate with substantially less re-
sources than the simulation code for the same 
data set. For either hardware scenario, the rule of 
thumb for pure parallelism is to have approximately 
10 percent of the total memory footprint used to 
generate the data. Although rising hardware costs 
have relaxed this rule somewhat for the largest su-
percomputers, many US supercomputing centers 
are procuring dedicated machines that come close 
to this guideline. For example, Lawrence Livermore 
National Laboratory’s Gauss machine has 8 percent 
of the memory of the Blue Gene/L machine, and 
Argonne National Laboratory’s Eureka has nearly 
5 percent of the memory of the Intrepid machine. 
Our research for this article was done with the sec-
ond scenario, on the supercomputer itself, but our 
results apply to either hardware scenario.

Massive-Data Experiments
Our basic experiment used a parallel program with 
high concurrency to read in a very large data set, 
apply a contouring algorithm (Marching Cubes), 
and render this surface as a 1,024 × 1,024 im-
age. We originally wanted to also perform volume 
rendering but encountered difficulties (which we 
describe later). An unfortunate reality of experi-
ments of this nature is that running large jobs on 
the largest supercomputers in the world is a diffi-
cult and opportunistic undertaking. After improv-
ing our volume-rendering algorithm, we couldn’t 
rerun our experiments on all these machines with 
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the improved volume-rendering code. Furthermore, 
real-world issues such as I/O and network conten-
tion undoubtedly affected the performance of 
these runs. Although we only studied isosurfacing, 
the process of loading data, applying an algorithm, 
and rendering is representative of many visualiza-
tion operations, and involves a significant portion 
of the code base.

Our variations of this experiment fell into three 

categories. The first was diverse supercomputing en-
vironments. We tested these techniques’ viability 
with different operating systems, I/O behavior, com-
puting power (flops), and network characteristics.

We performed these tests on

 ■ two Cray XT machines (Oak Ridge National 
Laboratory’s JaguarPF and Lawrence Berkeley 
National Laboratory’s Franklin),

A lternatives to pure parallelism include in situ processing,1,2 
multiresolution processing,3,4 out-of-core processing,5 

and data subsetting.6,7 Framing the decision of which para-
digm to use to process massive data as a competition 
between pure parallelism and the others is an oversimplifi-
cation. These techniques have various strengths and weak-
nesses and are often complementary. From our perspective, 
the issue is whether pure parallelism will scale sufficiently to 
process massive data sets.

Our study employed the VisIt visualization tool,8 which 
primarily uses pure parallelism, although some of its algo-
rithms allow for out-of-core processing, data subsetting, 
or in situ processing. (The experiments in the main article 
used pure parallelism exclusively.) ParaView,9 another vi-
able choice for our study, also relies heavily on pure paral-
lelism, again with options for out-of-core processing, data 
subsetting, and in situ visualization. These tools’ end users, 
however, use pure parallelism almost exclusively, using the 
other paradigms only situationally. Both tools rely on the 
Visualization ToolKit (VTK),10 which provides relatively small 
memory overhead for large data sets. This was crucial for 
our study (because data sets must fit in memory) and es-
pecially important given the trend in petascale computing 
toward low-memory machines.

The parallel VTK/ParaView infrastructure, in the context 
of this pure-parallelism article, is highly similar to the VisIt 
implementation in that they both divide the data set into 
pieces, partition those pieces, operate in an embarrassingly 
parallel fashion when possible, and perform parallel ren-
dering. So, we believe our scalability results are applicable 
to the major open-source large data visualization tools in 
use today. Yet another viable choice to explore pure paral-
lelism would have been the commercial product EnSight,11 
but accurately measuring performance with it would have 
been more difficult.

We believe this effort is the first to examine the per-
formance of pure parallelism at extreme scale on diverse 
architectures. However, other publications provide cor-
roboration in this space, albeit as individual data points. 
For example, Tom Peterka and his colleagues demon-
strated a similar overall balance of I/O and computation 
time when volume-rendering a 90-billion-cell data set on 
a Blue Gene/P machine.12
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 ■ a Sun Linux machine (the Texas Advanced Com-
puting Center’s Ranger),

 ■ a Chaos Linux machine (Lawrence Livermore 
National Laboratory’s Juno),

 ■ an AIX (Advanced Interactive Executive) ma-
chine (Lawrence Livermore’s Purple), and

 ■ a Blue Gene/P machine (Lawrence Livermore’s 
Dawn).

Table 1 provides details about these machines. For 
all but Purple, we ran with 16,000 cores and visu-
alized one trillion cells. (On Purple, we ran with 
only 8,000 cores and a half trillion cells because 
the full machine has only 12,208 cores and only 
8,000 are easily obtainable for large jobs.) For Jag-
uarPF and Franklin, which had more than 16,000 
cores available, we performed a weak-scaling study, 
maintaining a ratio of one trillion cells for every 
16,000 cores (see Figure 1).

The second category was I/O pattern. We tested 
whether certain patterns (collective versus noncol-
lective) exhibit better performance at scale. For the 
noncollective tests, we generated the data as com-
pressed binary data (gzipped). We used 10 files for 
every core; every file contained 6.25 million data 
points, for a total of 62.5 million data points per 
core. Because simulation codes often write out one 
file per core and, as a rule of thumb, visualization 
codes receive one-tenth of the cores of the simula-
tion code, we used multiple files per core to best 
emulate common real-world conditions. Because 
this pattern might not be optimal for I/O access, 
we performed a separate test in which all cores used 
collective access on a single, large file via MPI-IO.

The third category was data generation. Our pri-
mary mechanism was to upsample data by inter-
polating a scalar field for a smaller mesh onto a 
high-resolution rectilinear mesh. However, to off-
set concerns that upsampled data might be unrep-
resentatively smooth, we ran a second experiment, 
in which the large data set replicated a small data 
set many times over. The source data set was a 
core-collapse supernova simulation from the Chi-
mera code on a curvilinear mesh of more than 
3.5 million cells. (The sample data was courtesy of 

Tony Mezzacappa and Bronson Messer from Oak 
Ridge, Steve Bruenn from Florida Atlantic Uni-
versity, and Reuben Budjiara from the University 
of Tennessee.) We applied these upsampling and 
replication approaches because we aren’t aware of 
any data sets containing trillions of cells. More-
over, our study’s primary objective was to better 
understand the performance and functional lim-
its of parallel visualization software, which can be 
achieved using synthetic data.

Varying over the Supercomputing Environment
We ran these experiments on different supercom-
puters and kept the I/O pattern and data genera-
tion fixed, using noncollective I/O and upsampled 
data generation. Figure 2 and Table 2 show the 
results.

Figure	1.	Our	first	category	of	experiments	varied	over	supercomputing	
environment.	This	image	is	from	the	Franklin	run,	showing	a	contour	of	
a	32,000-core	VisIt	visualization	of	a	two-trillion-cell	data	set.

Table 1. Characteristics of the supercomputers in this study.

Machine 
name Machine type or OS Total no. of cores

Memory per 
core (Gbytes) System type Clock speed Peak flops

Top 500 rank  
(as of Nov. 2009)

JaguarPF Cray 224,162 2.0 XT5 2.6 GHz 2.33 Pflops 1

Ranger Sun Linux 62,976 2.0 Opteron Quad 2.0 GHz 503.8 Tflops 9

Dawn Blue Gene/P 147,456 1.0 PowerPC 850.0 MHz 415.7 Tflops 11

Franklin Cray 38,128 1.0 XT4 2.6 GHz 352 Tflops 15

Juno Commodity (Linux) 18,402 2.0 Opteron Quad 2.2 GHz 131.6 Tflops 27

Purple AIX (Advanced 
Interactive Executive)

12,208 3.5 Power5 1.9 GHz 92.8 Tflops 66
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Four observations are noteworthy. First, careful 
consideration of I/O striping parameters is neces-
sary for optimal I/O performance on Lustre file sys-
tems (Franklin, JaguarPF, Ranger, Juno, and Dawn). 
Even though JaguarPF has more I/O resources than 
Franklin, its I/O performance was worse because 
its default stripe count is four. In contrast, Frank-
lin’s default stripe count of two was better suited 
for the I/O pattern, which read 10 separate gzipped 
files per core. Smaller stripe counts often benefit 
file-per-core I/O because the files are usually small 
enough (tens of megabytes) that they won’t contain 
many stripes. Spreading them thinly over many I/O 
servers increases contention.

Second, because the data was gzipped, the I/O 
load across cores was unequal. The reported I/O 
times measure the elapsed time between file open-
ing and a barrier after all cores are finished read-
ing. Because of this load imbalance, I/O time 
didn’t scale linearly from 16,000 to 32,000 cores 
on Franklin and JaguarPF.

Third, Dawn has the slowest clock speed (850 
MHz), which was reflected in its contouring and 
rendering times.

Finally, although many of the variations we ob-
served were expected—for example, owing to slow 
clock speeds, interconnects, or I/O servers—others 
weren’t. When we increased Franklin’s render-
ing time from 16,000 to 32,000 cores, seven to 
10 network links failed and had to be statically 
rerouted, resulting in suboptimal network per-
formance. Rendering algorithms are “all reduce”-
type operations sensitive to bisectional bandwidth, 
which was affected by this issue. Also, for Juno’s 
slow rendering time, we suspect a similar network 
problem. We haven’t been able to schedule time on 
either machine to follow up on these issues.

Varying over the I/O Pattern
We compared collective and noncollective I/O pat-
terns on Franklin for a one-trillion-cell upsampled 
data set. In the noncollective test, each core per-
formed 10 pairs of fopen and fread calls on 
independent gzipped files without any coordina-
tion among cores. In the collective test, all cores 
synchronously called MPI_File_open once and 
then MPI_File_read_at_all 10 times on a 
shared file (each read call corresponded to a differ-
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Figure	2.	Runtimes	for	I/O,	contouring,	and	rendering.	These	results	show	that,	although	there	is	variation	across	the	
supercomputers,	I/O	is	the	slowest	phase.

Table 2. Performance across diverse architectures.

Machine No. of cores
Data set size 

(TCells) Total I/O time (sec.) Contour time (sec.)
Total pipeline 

execution time (sec.)†
Rendering time 

(sec.)

Purple 8,000 0.5 53.4 10.0 63.7 2.9

Dawn 16,384* 1.0 240.9 32.4 277.6 10.6

Juno 16,000 1.0 102.9 7.2 110.4 10.4

Ranger 16,000 1.0 251.2 8.3 259.7 4.4

Franklin 16,000 1.0 129.3 7.9 137.3 1.6

JaguarPF 16,000 1.0 236.1 10.4 246.7 1.5

Franklin 32,000 2.0 292.4 8.0 300.6 9.7

JaguarPF 32,000 2.0 707.2 7.7 715.2 1.5

* Dawn requires that the number of cores be a power of two. 
† This measure indicates the time to produce the surface.
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ent domain in the data set). An underlying collec-
tive buffering, or two-phase algorithm, in Cray’s 
MPI-IO implementation aggregated read requests 
onto a subset of 48 nodes (matching the file’s 48 
stripe count) that coordinated the low-level I/O 
workload, dividing it into 4-Mbyte stripe-aligned 
fread calls. As the 48 aggregator nodes filled their 
read buffers, they shipped the data through MPI to 
its final destination among the 16,016 cores. We 
used a different number of cores (16,000 versus 
16,016) to make data layout more convenient for 
each scheme.

Table 3 shows the I/O patterns’ performance 
on Franklin. The data set size for collective I/O 
corresponds to 4 bytes for one trillion cells. The 
data read isn’t 4,000 Gbytes because 1 Gbyte is 
1,073,741,824 bytes. The data set size for noncol-
lective I/O is much smaller because it was gzipped.

Both patterns led to similar read bandwidths, 7.4 
and 7.8 Gbytes per second (GBps), which are about 
60 percent of the maximum available bandwidth 
of 12 GBps on Franklin. In the noncollective case, 
load imbalances caused by different gzip compres-
sion factors might account for this discrepancy. 
For the collective I/O, we speculate that coordina-
tion overhead between the MPI tasks might limit 
efficiency. Furthermore, achieving 100 percent ef-
ficiency wouldn’t substantially change the balance 
between I/O and computation.

Varying over Data Generation
Here, we processed both upsampled and replicated 
data sets with one trillion cells on 16,016 cores of 
Franklin using collective I/O. Figure 3 shows the 
visualization results for the replicated data set.

The contouring times were identical because this 
operation is dominated by the movement of data 
through the memory hierarchy (L2 cache to L1 
cache to registers), rather than the relatively rare 
case in which a cell contains a contribution to the 
isosurface (see Table 4). The rendering time nearly 
doubled because the contouring algorithm pro-
duced more triangles with the replicated data set.

Scaling Experiments
To further demonstrate the scaling properties of 
pure parallelism, we present results that demon-
strate weak scaling (scaling up the number of pro-
cessors with a fixed amount of data per processor) 
for both isosurface generation and volume ren-

dering. (We ran this study in July 2009, after fix-
ing the volume-rendering algorithm.) Once again, 
these algorithms test a large portion of the under-
lying pure-parallelism infrastructure and indicate 
a strong likelihood of weak scaling for other algo-
rithms in this setting. Demonstrating weak-scaling 
properties on high-performance computing systems 
meets the accepted standards of Joule certification, 
which is a US Office of Management and Budget 
program to evaluate the effectiveness of agency pro-
grams, policies, and procedures.

Study Overview
We performed the scaling studies on output from 
Denovo, Oak Ridge National Laboratory’s 3D 

Table 3. The performance of different I/O patterns on Franklin.

I/O pattern No. of cores
Data set size 

(TCells)
Total I/O time 

(sec.) Data read (Gbytes)
Read bandwidth 

(Gbytes per second)

Collective 16,016 1 478.3 3,725.3 7.8

Noncollective 16,000 1 129.3 954.2 7.4

Figure	3.	Our	third	category	of	experiments	varied	over	data	generation,	
to	ensure	we	weren’t	studying	data	that	was	unrepresentatively	smooth.	
This	image	shows	a	contouring	of	replicated	data	(one	trillion	cells	
total),	visualized	with	VisIt	on	Franklin	using	16,016	cores.

Table 4. Performance across different data generation methods.

Data 
generation

Total I/O 
time (sec.)

Contour 
time (sec.)

Total pipeline 
execution time (sec.)

Rendering 
time (sec.)

Upsampled 478.3 7.6 486.0 2.8

Replicated 493.0 7.6 500.7 4.9
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radiation transport code that models radiation 
dose levels for a nuclear reactor core and its sur-
rounding areas. The Denovo simulation code 
doesn’t directly output a scalar field representing 
the effective dose. Instead, we calculated this dose 
at runtime through a linear combination of 27 
scalar fluxes. For both the isosurface and volume-
rendering tests, VisIt read in 27 scalar fluxes and 
combined them to form a single scalar field rep-
resenting radiation dose levels. The isosurface ex-
traction test extracted six evenly spaced isocontour 
values of the radiation dose levels and rendered a 
1,024 × 1,024 pixel image. The volume-rendering 
test consisted of ray casting with 1,000, 2,000 and 
4,000 samples per ray of the radiation dose level 
on a 1,024 × 1,024 pixel image.

We ran these visualization algorithms on a base-
line Denovo simulation consisting of 103,716,288 
cells on 4,096 spatial domains with a 83.5-Gbyte 
disk. We ran the second test on a Denovo simula-
tion nearly three times the size of the baseline run, 
with 321,117,360 zones on 12,720 spatial domains 
and a 258.4-Gbyte disk.

Results
The baseline calculation used 4,096 cores; the 
larger calculation used 12,270. We chose these 
core counts, which are large relative to the prob-
lem size, because they represent the number of 
cores Denovo used. This matching core count was 
important for the Joule study and is also indicative 
of performance for an in situ approach.

Tables 5 and 6 give the weak-scaling results of 

isosurfacing and volume rendering, respectively. 
(These tests didn’t include I/O.) The algorithm 
demonstrates superlinear performance because the 
number of samples per core (which directly affects 
the work performed) is smaller at 12,270 cores, 
whereas the number of cells per core is constant. 
The anomaly in which performance increases at 
2,000 samples per ray requires further study.

Figure 4a shows the rendering of an isosurface 
from the Denovo calculation we produced using 
VisIt; Figure 4b gives the volume rendering of the 
data from the calculation.

Pitfalls at Scale
Our results in this section illustrate that decisions 
that were appropriate on the order of hundreds 
of cores become serious impediments at higher 
levels of concurrency. The offending code existed 
at various levels of the software, from core al-
gorithms (volume rendering), to code supporting 
the algorithms (status updates), to foundational 
code (plug-in loading). The volume-rendering 
and status update problems were easily correct-
able; their fixes will be in the next public version 
of VisIt. We partially addressed the plug-in load-
ing problem, but a total fix might require remov-
ing shared libraries altogether.

Volume Rendering
The volume-rendering code used an O(n2) buffer, 
where n is the number of cores. An all-to-all com-
munication phase redistributed samples along rays 
according to a partition with dynamic assign-
ments. An optimization for this phase minimized 
the number of samples that needed to be commu-
nicated by favoring assignments that kept sam-
ples on their originating core. This optimization 
required an O(n2) buffer that contained mostly 
zeroes. Although this was effective for small core 
counts, the coordination overhead caused VisIt to 

Table 5. Weak scaling of isosurfacing.

Algorithm No. of cores

Time (sec.)

Minimum Maximum Average

Calculate radiation* 4,096 0.180 0.250 0.2100

12,270 0.190 0.250 0.2200

Isosurface† 4,096 0.014 0.027 0.0180

12,270 0.014 0.027 0.0170

Render (on core)‡ 4,096 0.020 0.065 0.0225

12,270 0.021 0.069 0.0230

Render (across cores)|| 4,096 0.048 0.087 0.0520

12,270 0.050 0.091 0.0530

* The time to calculate the linear combination of the 27 scalar fluxes.
† The isosurface algorithm’s execution time.
‡ The time to render that core’s surface.
|| The time to combine that image with the other cores’ images.

Table 6. Weak scaling of volume rendering.

No. of cores

Processing time per ray (sec.)

1,000 samples 2,000 samples 4,000 samples

4,096 7.21 4.56 7.54

12,270 6.53 6.60 6.85
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run out of memory at scale. Our solution was to 
eschew the optimization, simply assigning pixels 
to cores without concern for where individual 
samples lay. As the number of samples decreases 
with large core counts, ignoring this optimization 
altogether at high concurrency is probably the best 
course of action.

We don’t have comprehensive volume-rendering 
data to present for the one-trillion-cell data sets. 
However, we observed that after our changes, ray-
casting performance was approximately five seconds 
per frame for a 1,024 × 1,024 image (see Figure 5).

For the weak-scaling study on Denovo data, 
running with 4,096 cores, the speedup was ap-
proximately a factor of five (see Table 7).

All-to-One Communication
At the end of every pipeline execution, each core re-
ports its status (success or failure) and some meta-
data (such as extents). These status and extents 
were being communicated from each MPI task to 
MPI task 0 through point-to-point communication, 
which caused significant delays, as Table 8 shows.

After our first round of experiments, our colleague 
Mark Miller of Lawrence Livermore Lab indepen-
dently observed the same problem and reimple-
mented the scheme to use tree communication. 
Taking the pipeline time and subtracting contour 
and I/O time approximates how much time was 
spent waiting for status and extents updates. (The 
other runs reported in this article had status-
checking code disabled; the last Dawn run is the 
only reported run with new status code.)

Another pitfall is the difficulty in getting con-
sistent results. In the Dawn runs, a dramatic slow-
down in I/O times occurred from June to August. 
This is because the I/O servers backing the file 
system became unbalanced in their disk usage in 

Table 7. Volume rendering of Denovo data at 4,096 cores before and 
after speedup.

Date run

Processing time per ray (sec.)

1,000 samples 2,000 samples 4,000 samples

Spring 2009 34.70 29.00 31.50

Summer 2009 7.21 4.56 7.54

(a) (b)

Figure	4.	Visualization	results	for	the	Denovo	calculation,	produced	by	VisIt	using	12,270	cores	of	JaguarPF:	(a)	a	rendering	of	an	
isosurface	and	(b)	a	volume	rendering	of	the	data.	These	images	were	the	byproduct	of	the	tests	to	demonstrate	that	VisIt	and	
the	pure-parallelism	technique	that	it	uses	are	capable	of	weak	scaling.

Table 8. Performance with old versus new status-checking code, on Dawn.

All-to-one? No. of cores
Data set size 

(TCells)
Total I/O time 

(sec.)
Contour time 

(sec.)
Total pipeline 

execution time (sec.)
Pipeline minus 

contour & I/O (sec.) Date run

Yes 16,384 1 88.0 32.2 368.7 248.5 June 2009

Yes 65,536 4 95.3 38.6 425.9 294.0 June 2009

No 16,384 1 240.9 32.4 277.6 4.3 Aug. 2009
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July. This caused the algorithm that assigns files 
to servers to switch from a round-robin scheme to 
a statistical scheme, meaning files were no longer 
assigned uniformly across I/O servers. Although 
this scheme makes sense from an operating sys-
tem perspective by leveling out the storage imbal-
ance, it hampers access times for end users. With 
the new scheme, the number of files assigned to 
each I/O server followed a Poisson distribution, 
with some servers assigned three or four more 
times more files than others. Because each I/O 
server has a fixed bandwidth, those with more 
files will take longer to serve up data, resulting in 
I/O performance degradation of factors of three 
or four for the cores trying to fetch data from the 
overloaded I/O servers.

Shared Libraries and Start-Up Time
During our first runs on Dawn, using only 4,096 
cores, we observed lags in start-up time that wors-
ened as the core count increased. Each core was 
reading plug-in information from the file system, 

creating contention for I/O resources. We ad-
dressed this problem by modifying VisIt’s plug-in 
infrastructure so that plug-in information could be 
loaded on MPI task 0 and broadcast to other cores. 
This change made plug-in loading nine times faster.

That said, start-up time was still slow, taking as 
long as five minutes. VisIt uses shared libraries in 
many instances to let new plug-ins access symbols 
not used by current VisIt routines; compiling stati-
cally would remove these symbols. The likely path 
forward is to compile static versions of VisIt for the 
high-concurrency case. This approach will likely 
be palatable because new plug-ins are frequently 
developed at lower levels of concurrency.

Our results demonstrate that pure parallelism 
does scale but is only as good as its support-

ing I/O infrastructure. We successfully visualized 
up to four trillion cells on diverse architectures 
with production visualization software. The super-
computers we used were “underpowered,” in that 
the current simulation codes on these machines 
produce meshes far smaller than a trillion cells. 
They were appropriately sized, however, when con-
sidering the rule of thumb that the visualization 
task should get 10 percent of the simulation task’s 
resources and assuming our trillion-cell mesh rep-
resents the simulation of a hypothetical 160,000-
core machine.

I/O performance became a major focus of our 
study because slow I/O prevented interactive rates 
when loading data. Most supercomputers are 
configured for I/O bandwidth to scale with the 
number of cores, so the bandwidths we observed 
in our experiments are commensurate with what 
we should expect when using 10 percent of a fu-
ture supercomputer. Thus, the inability to read 
data sets quickly presents a real concern. Worse, 
the latest supercomputing trends show diminish-
ing I/O relative to increasing memory and flops, 
meaning that the I/O bottleneck we observed 
might potentially constrict further with the next 
generation of supercomputers.

Some potential hardware and software solutions 
might help address this problem, however. From the 
software side, multiresolution techniques and data 
subsetting (such as query-driven visualization) 
limit how much data is read, whereas in situ visu-
alization avoids I/O altogether. From the hardware 
side, an increased focus on balanced machines that 
have I/O bandwidth commensurate with comput-
ing power would reduce I/O time. Furthermore, 
emerging I/O technologies, such as flash drives, 
might have a significant impact. From this study, 

Figure	5.	Volume	rendering	of	one	trillion	cells,	visualized	by	VisIt	on	
JaguarPF.	As	expected,	we	ran	into	many	pitfalls	when	running	at	high	
levels	of	concurrency.	In	this	case,	VisIt’s	volume-rendering	algorithm	
had	to	be	modified	to	remove	an	O(n2)	algorithm.

Our results demonstrate that pure 
parallelism does scale but is only as good 

as its supporting I/O infrastructure.
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we conclude that some combination of these solu-
tions will be necessary to overcome the I/O prob-
lem and obtain good performance. 
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